Keyboard shortcuts

Press or to navigate between chapters

Press S or / to search in the book

Press ? to show this help

Press Esc to hide this help

Chant
intent driven development

Research Workflow Guide

A complete walkthrough showing how chant orchestrates research workflows from investigation through implementation. Two parallel paths demonstrate the same patterns in different contexts.

Why This Guide?

Research workflows share common patterns regardless of domain:

  1. Investigate — Gather and synthesize sources
  2. Analyze — Process data to generate findings
  3. Document — Capture insights for others
  4. Implement — Act on findings
  5. Maintain — Keep findings current as inputs change

Chant’s spec types map directly to these phases. This guide shows how.

Two Paths, Same Patterns

This guide follows two researchers using identical chant patterns in different domains:

PathProtagonistResearch Goal
AcademicDr. Sarah Chen, PhD studentAnalyze 30 years of Arctic temperature data
DeveloperAlex Torres, Staff EngineerEvaluate microservices migration for 80K LOC monolith

Both paths demonstrate:

  • Research specs with informed_by: (synthesis)
  • Research specs with origin: (analysis)
  • Documentation specs with tracks:
  • Driver specs for multi-phase coordination
  • Drift detection and re-verification

The Universal Research Pattern

┌──────────────────────────────────────────────────────────────────┐
│                    Research Workflow Phases                       │
└──────────────────────────────────────────────────────────────────┘

Phase 1: Investigation
┌─────────────────────┐
│   Research Spec     │  informed_by: [papers|code|docs]
│    (synthesis)      │  → Synthesize sources, identify patterns
└──────────┬──────────┘
           │
           ▼
Phase 2: Analysis
┌─────────────────────┐
│   Research Spec     │  origin: [data|logs|metrics]
│    (analysis)       │  → Analyze data, generate findings
└──────────┬──────────┘
           │
           ├────────────────────────────┐
           ▼                            ▼
Phase 3: Documentation              Implementation
┌─────────────────────┐         ┌─────────────────────┐
│  Documentation      │         │    Driver Spec      │
│      Spec           │         │   (coordinate)      │
│                     │         └──────────┬──────────┘
│  tracks: [code]     │              ┌─────┴─────┬─────────┐
│  → Capture          │              ▼           ▼         ▼
│    findings         │           Code        Code      Code
└─────────────────────┘           (.1)        (.2)      (.3)
           │                       │           │         │
           │                       └───────────┴─────────┘
           │                                │
           ▼                                ▼
Phase 4: Maintenance
┌──────────────────────────────────────────────────────────────────┐
│              Drift Detection & Re-verification                    │
│                                                                   │
│   • origin: files change → re-analyze                            │
│   • tracks: code changes → update docs                           │
│   • informed_by: sources change → review                         │
└──────────────────────────────────────────────────────────────────┘

How the Paths Overlap

Both paths use the same spec types in the same order. The table below maps each phase:

PhaseAcademic ExampleDeveloper ExampleSpec Types
InvestigationLiterature review (25 papers)Codebase analysis (src/**)research with informed_by:
AnalysisStatistical analysis of climate dataPerformance metrics analysisresearch with origin:
DocumentationWrite methodology sectionDocument architecture decisionsdocumentation with tracks:
ImplementationData processing pipelinePOC microservice extractioncode, driver, depends_on:
PipelinePhase 1→2→3 dependenciesService-by-service rolloutdriver with member specs
MaintenanceNew data triggers re-analysisCode changes trigger doc updatesdrift detection

Spec Type Reference

Spec TypePurposeKey FieldsExample
researchInvestigation and analysisinformed_by:, origin:Synthesize papers, analyze data
documentationCapture and communicatetracks:Architecture docs, methodology
codeImplement changestarget_files:Scripts, services, utilities
driverCoordinate phasesmembers:Multi-step pipelines
taskNon-code worktarget_files:Reports, presentations

Choose Your Path

Academic Path — Follow Dr. Sarah Chen through:

  • Literature review of 25 climate science papers
  • Statistical analysis of Arctic temperature datasets
  • Multi-phase data pipeline with dependencies
  • Drift detection when new data is published

Developer Path — Follow Alex Torres through:

  • Codebase coupling analysis of 80K LOC monolith
  • Performance metrics analysis from production logs
  • Architecture documentation that tracks source code
  • Drift detection when code or metrics change

Key Concepts Demonstrated

  • Synthesis vs. Analysisinformed_by: for reading sources, origin: for processing data
  • Dependency chainsdepends_on: for phase ordering
  • Driver coordination — Decomposing complex work into parallel member specs
  • Documentation trackingtracks: keeps docs synchronized with source
  • Drift detection — Know when inputs change, trigger re-verification

Prerequisites

Familiarity with:

See Also